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This study concerns the flow around the base of a vertical, wall-mounted cylinder – a
pile – exposed to waves. The study comprises (i) flow visualization of horseshoe-vortex
flow in front of and the lee-wake-vortex flow behind the pile and (ii) bed shear stress
measurements around the pile conducted in a wave flume, plus supplementary bed
shear stress measurements carried out in an oscillatory-flow water tunnel. The
Reynolds number range of the flume experiments is Re

D
¯ (2–9)¬10$ and that of the

tunnel experiments is Re
D

¯ 10$–5¬10%, in which Re
D

is based on the pile size. Steady-
current tests were also carried out for reference. The horseshoe-vortex flow (like lee-
wake-vortex flow) is governed primarily by the Keulegan–Carpenter number, KC. The
range of KC was from 0 to about 25 in the flume experiments, and from 4 to 120 in the
tunnel experiments. The experiments were conducted mainly with circular piles. The
results indicate that no horseshoe vortex exists for KC! 6. The size and lifespan of the
horseshoe vortex increase with KC. The influence of the cross-sectional shape of the
pile on the horseshoe vortex was investigated. The results show that a square pile with
90° orientation produces the largest horseshoe vortex while that with 45° orientation
produces the smallest one, the circular-pile result being between the two. The influence
of a superimposed current on the horseshoe vortex was also investigated. The range of
the current-to-wave-induced-velocity ratio, U

c
}U

m
, was from 0 to about 0.8. The

overall effect of the superimposed current is to increase the size and lifespan of the
horseshoe vortex. This effect increases with increasing U

c
}U

m
. Regarding the near-bed

lee-wake flow, the flow regimes observed for the two-dimensional free-cylinder case
exist for the present case, too, but with one exception: in the present case, no transverse
vortex street was observed in the so-called single-pair regime. The results show that the
bed shear stress beneath the horseshoe vortex and in the lee-wake area is heavily
influenced by KC. The amplification of the bed shear stress with respect to its
undisturbed value is maximum (O(4)) at the side edges of the pile, in contrast to what
occurs in steady currents where the maximum occurs at an angle of about 45° from the
upstream edge of the pile with an amplification of O(10).

1. Introduction

The flow around the base of a vertical pile consists of two basic flow structures : one
is the so-called horseshoe vortex which is formed in front of the pile, and the other is
the vortex flow pattern formed at the lee side of it (figure 1).

The horseshoe vortex is caused by the rotation in the incoming flow: the boundary
layer on the bed, upstream of the pile, undergoes a three-dimensional separation under
the influence of the adverse pressure gradient produced by the pile, and the separated
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boundary layer rolls up to form a swirling vortex around the pile, which then trails off
downstream (figure 1).

The lee-side vortices, on the other hand, are caused by the rotation in the boundary
layer over the surface of the pile : the shear layers emanating from the side edges of the
pile roll up to form these vortices.

These flow effects can introduce extensive scour on an erodible bed in the
neighbourhood of the pile and may reduce the stability of pile-supported marine
structures such as platforms, bridges, subsea templates, thus leading to their failures.
Knowledge of these effects is essential when scour protection around such structures
is considered.

In the case of steady currents (wind flows, river flows, etc.) the horseshoe vortex has
been investigated quite extensively in the past decades (see Baker 1979; Niederoda &
Dalton 1982; Dargahi 1989 for reviews of recent work). Various visualization
techniques, such as the smoke technique in a wind tunnel (e.g. Schwind 1962; Baker
1979) and the hydrogen-bubble technique in water (Dargahi 1989), have been used to
visualize the horseshoe vortex flow. Also, measurements of pressure and velocity
beneath the horseshoe vortex have been carried out (Hjorth 1975; Baker 1979;
Dargahi 1989). In Hjorth’s and Baker’s studies, the distribution of bed shear stress
beneath the horseshoe vortex has been calculated from the measured velocity profiles.
These latter studies demonstrated that the bed shear stress can be amplified by a factor
of 7–11 with respect to its undisturbed value, emphasizing the importance of the
horseshoe vortex in scour processes.

On the theoretical side, numerical simulation of the horseshoe-vortex flow has been
carried out by several researchers in recent years. Briley & McDonald (1981) made
Navier–Stokes computations of a laminar, steady horseshoe vortex at the junction
between an elliptic strut and a flat plate at low Mach numbers. Using a three-
dimensional incompressible Navier–Stokes code, Kwak et al. (1986) computed the
laminar, steady junction flow. Deng & Piquet (1992) studied the three-dimensional
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turbulent flow about an aerofoil}flat plate junction, capturing the main features of the
horseshoe vortex. An iterative, fully decoupled technique was applied to the Reynolds-
averaged Navier–Stokes equations in the latter study. A comprehensive review of
recent work is given by Deng & Piquet (1992).

Although much effort has been put into the study of horseshoe-vortex flow in the
case of steady currents, it appears that no previous study has been conducted to
investigate these flows in waves.

Regarding the lee-wake vortex flow, an extensive volume of knowledge has
accumulated over the past two decades on the two-dimensional vortex flow behind a
free cylinder subject to an oscillatory flow (see e.g. Sarpkaya & Isaacson 1981;
Bearman et al. 1981; Williamson 1985) and the complex behaviour of vortex motions
in various regimes is well understood. However, no study is yet available that
investigates these vortex-flow regimes in the case of a pile where the cylinder is confined
with a wall at one end.

The purpose of the present investigation is to study in a systematic manner these flow
structures, namely the horseshoe and the lee-wake vortices, when the pile is exposed to
waves. It turns out that the horseshoe-vortex flow, just as in the case of lee-wake vortex
flow, is governed primarily by the Keulegan–Carpenter number, KC. The present work
basically focuses on the variations with KC.

2. Experimental set-up

2.1. Flow-�isualization experiments

These experiments were carried out in a wave flume, 0.6 m in width, 0.8 m in depth and
26.5 m in length. Waves were produced by a piston-type wave generator. The
measurement section was located 14 m from the wave generator. In the 11 m long
working section of the flume, smooth PVC plates were fixed to the bottom. The water
depth was maintained constant at 40 cm throughout the experiments. A honeycomb-
type filter was placed in the flume, immediately after the wave generator, to avoid any
variation of waves in the transverse direction in the case of waves and to straighten the
flow in the case of a steady current.

The hydrogen-bubble technique was used in the experiments to visualize the near-
bed flow processes around the junction between the cylinder and the bed. A 25 cm long
and 0.050 mm diameter copper wire was used as the hydrogen-bubble wire. It was
placed at a right angle to the direction of wave propagation at a streamwise distance
of about 1 cm from the edge of the cylinder and at a vertical location of y¯ 2 mm away
from the bed. In some of the experiments, a second hydrogen-bubble wire, placed at
the opposite side of the cylinder, was used to show the influence of the asymmetry
between the wave crest and the wave trough.

Two kinds of piles were used in the experiments. One was a circular cylinder with the
diameter D¯ 40 mm and the other was a square-section cylinder of the same width.
The surface of the cylinders was smooth. The lowermost 1.2 cm portions of the
cylinders were made from a transparent material through which the light was spread,
to facilitate flow visualization. The square cylinder was tested for two different
orientations to the flow, 90° and 45°, to show the influence of the cross-sectional shape
of piles.

The visualized near-bed flow was videotaped. The x-component of the orbital
velocity at the point (x, y, z)¯ (6, 15, 6) cm (figure 1) was recorded simultaneously with
the flow visualization as a reference signal. This velocity was measured by a Dantec
one-component laser Doppler anemometer (LDA).
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Some supplementary tests were made in steady currents and in combined waves and
current. The former was for reference, and the latter was for the purpose of studying
the influence of a superimposed current on the flow structures observed in the case of
waves alone.

2.2. Bed shear-stress measurements

These experiments were carried out mainly in the same flume as that used in the flow-
visualization experiments. Some supplementary experiments were carried out in a U-
shaped oscillatory-flow water tunnel. This tunnel is the same as that described in
Jensen, Sumer & Fredsøe (1989). The working section was 10 m long, 0.39 m wide and
0.29 cm high. The top and sidewalls of the working section were made of smooth
transparent Perspex plates while the bottom was made of smooth PVC plates.

The same circular cylinder as that used in the flow-visualization tests was used in the
flume experiments, while a 5 cm diameter circular cylinder was used in the tunnel
experiments. This cylinder was placed vertically in the tunnel, extending the whole
tunnel height.

The bed shear stress was measured by a Dantec 55R46 Spec two-component hot-film
probe. The probe was mounted flush to the bed. It enabled the magnitude and the
direction of the bed shear-stress vector to be measured. Details of the probe and the
measurement technique plus the accuracy of the instrument are given in Sumer et al.
(1993). In some of the flume experiments and in the tunnel experiments the bed shear
stress was measured along the principal axes x and y (figure 1). In four tests in the flume
experiments (tests 1, 4, 8 and 14, table 1, given in the Appendix), the bed shear stress
was measured around the base of the pile in the half-space y" 0 over an area extending
from x}DE®3 to x}DE 3 in the x-direction and from ®y}D¯ 0 to y}DE 3.5 in the
y-direction.

The ratio of the flume width to the pile diameter was 15. This figure was about eight
in the tunnel experiments. According to the potential flow theory, the blockage effect
for these values of the width-to-diameter ratio is less than 1%.

2.3. Velocity measurements

The velocities, both the x- and z-components (figure 1), were measured in the plane of
symmetry y¯ 0 for x}D!®0.5 using the previously mentioned LDA equipment.
Also, the velocity profile measurements were carried out in the case of undisturbed-
flow situations, using the same LDA equipment.

3. Test conditions

Tables 1–4 in the Appendix summarize the test conditions. T is the wave period or
the period of the oscillatory flow. U

m
is the maximum value of the undisturbed orbital

velocity at the bed in the case of waves (the flume experiments) and that of the free-
stream velocity in the case of oscillatory flow (the tunnel experiments). V

!
is the

undisturbed free-stream velocity in the case of steady current, and U
c
is the velocity of

the current component of the undisturbed combined flow, measured at the edge of the
wave boundary layer (see the small box for the definition sketch in figure 10; u¯U

m

at z¯ δ
"
). The quantity a is the amplitude of the undisturbed oscillatory flow,

a¯
U

m
T

2π
. (1)

U
fm

is the maximum value of the friction velocity in the case of waves and oscillatory
flow, defined by

U
fm

¯ (τa
!m

}ρ)"/# (2)
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in which τa
!m

is the maximum value of the undisturbed bed shear stress, and U
f
is the

friction velocity in the case of a steady current :

U
f
¯ (τa

!
¢}ρ)"/# (3)

in which τa
!
¢ is the undisturbed bed shear stress. The overbar in the above equations

and throughout the paper denotes ensemble averaging in the case of waves and
oscillatory flow, and time averaging in the case of steady current. Re is the Reynolds
number of the undisturbed wave boundary layer defined by

Re¯ aU
m
}ν (4)

in which ν is the kinematic viscosity. δ is the thickness of the undisturbed boundary
layer ; in the case of waves and oscillatory flow it is defined such that

u¯ u
max

at z¯ δ and ωt¯ 90° (5)

(Jensen et al. 1989, figure 24).
For the experiments where the flow is laminar, namely all the wave tests and the first

three tunnel tests (tables 1 and 4), δ values are obtained from the familiar laminar
boundary-layer solution (Batchelor 1967, p. 354) that can be expressed as

δ

a
¯

3π

4 0
2

Re1
"/#

. (6)

For the experiments where the flow is transitional (tests 66 and 67), δ values are
calculated from the experimental information given in Jensen et al. (1989). In the case
of steady current (tests 48–51), δ is taken as the entire flow depth.

The quantity KC in the table is the Keulegan–Carpenter number, defined by

KC¯U
m

T}D. (7)

Reδ and Re
D

are the boundary-layer-thickness Reynolds number and the pile Reynolds
number, respectively, defined by

Reδ ¯
1

2

3

4

δU
m
}ν for waves}oscillatory flow

δV
!
}ν for steady current,

(8)

and

Re
D

¯
1

2

3

4

DU
m
}ν for waves}oscillatory flow

DV
!
}ν for steady current.

(9)

4. Undisturbed flow

4.1. Wa�e experiments

The undisturbed flow was measured in four different characteristic wave regimes
(tests 1, 4, 8 and 14). Figure 2 depicts time series of the outer flow velocity U

!
, measured

at z¯ 5 cm. As seen, the signal diverges from a sinusoidal variation for the last three
cases. This is because of the large wave heights and wave periods, required to achieve
large KC.

As seen from table 1, the wave boundary-layer Reynolds number, Re, is always
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F 3. Undisturbed velocity profiles at the measurement section; waves alone, test 14.
Symbols : measured profile ; solid lines : laminar flow solution.

smaller than the critical Reynolds number, Re
cr

E 1.5¬10& (Sleath 1984), indicating
that the wave boundary layer in the experiments was laminar.

Figure 3 gives the undisturbed flow velocity profiles measured in test 14, together
with the laminar-flow-solution profiles (the solid lines). The laminar solution profiles
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are obtained for the orbital velocity variation measured in the test, which is
approximated by

u
!

U
m

¯ a sin (ωt)b sin (2ωt), (10)

and the solution is obtained by superposition of two laminar solutions, one for the
velocity variation represented by the first term and the other for the next term on the
right-hand side of (10). Here ω is the angular frequency, and a and b are coefficients
determined by the least-square method. Figure 3 shows that the agreement between the
measurements and the laminar solution is good.

4.2. Current experiments

Figure 4 depicts the measured undisturbed velocity profile together with the van
Driest (1956) profile,

ua
U

f

¯ 2&y
+

!

dy+

1²14κ#y+
# [1®exp (®y+}A)]#´"/#

, (11)

in which y+¯ yU
f
}ν, κ is the Ka! rma! n constant (taken as κ¯ 0.42) and A is the van

Driest damping factor (¯ 25). The friction velocity, obtained by fitting the van Driest
profile to the measured velocity profile, is U

f
¯ 0.42 cm s−". This value agrees well

(within about 10%) with the value measured by the hot-film probe referred to in §2.2
(see table 2).

No velocity profile measurements were made in the case of combined waves and
current tests (tests 52–62). The flow velocity traces (obtained by the LDA
measurements) indicated that the flow in these experiments was in the turbulent regime.
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4.3. Oscillatory-flow experiments

From the extensive boundary-layer measurements carried out in the same oscillatory-
flow tunnel (Jensen et al. 1989) it was concluded that (i) for tests 63–65 the undisturbed
boundary layer was the in laminar regime and represented quite well by the laminar
sinusoidal oscillatory flow solution (Batchelor 1967, p. 354), and (ii) for the other tests
(tests 66 and 67), it was in the transitional flow regime. The velocity profiles for the
latter case are presented in Jensen et al. (1989).

5. Horseshoe vortex

5.1. KC dependence

The near-bed flow around a pile partly consists of the horseshoe vortex (formed at the
bed in front of the pile) and partly of the vortex flow pattern (formed at the lee side
of the pile) (figure 1), as mentioned previously.

The horseshoe vortex is formed at the bed because of the rotation in the incoming
flow velocity (figure 1). In waves, this rotation occurs in the wave boundary layer.

The non-dimensional quantities describing the horseshoe vortex in the case of a
steady current depend mainly on the following parameters (Baker 1979) :

Re
D
, δ}D, pile geometry. (12)

In the case where the pile is exposed to waves, an additional parameter, the
Keulegan–Carpenter number, KC (equation (7)), emerges. From (7), KC is
proportional to the ratio 2a}D, where 2a represents the stroke of the motion at the bed
(figure 1). Small KC therefore means that the orbital motion of water particles is small
relative to the width of the pile. When KC is very small, the horseshoe vortex may not
even be formed, because the stroke of the motion is not large enough for the incoming
boundary layer to separate. For very large KC, on the other hand, the stroke of the
motion is so large that the flow in each half-period resembles that in steady currents.
Therefore, the horseshoe vortex may be expected to behave in much the same way as
in the case of a steady current.

The preceding considerations imply that the formation and development of the
horseshoe vortex in the case of waves is heavily influenced by KC.

5.2. The existence of a horseshoe �ortex

Figure 5 depicts the flow in front of the base of the pile for two KC : 2.8 and 10.3. The
sharp, crescent shape (A) in the pictures represents the lowermost transparent portion
of the pile through which the light spreads out. The horseshoe vortex manifests itself
in the photographs by the absence of the bubbles in the immediate surroundings of the
pile (figure 5b where KC¯ 10.3), while the presence of the bubbles in the immediate
surroundings of the pile means that there is no horseshoe vortex (figure 5a where
KC¯ 2.8). The vector diagram presented in figure 6 further reveals the existence of
the horseshoe vortex for the same conditions as in figure 5(b) (for KC¯ 10.3).

The results of the present flow visualization analysis together with the analysis of the
bed shear stress data are plotted in figure 7. In the flow visualization analysis, the small
time resolution of video (namely, 1}25 s) and the small incremental increase of KC
enabled us to detect rather accurately the onset of a horseshoe vortex (i.e. the limit to
the existence of horseshoe vortex) as a function of KC, plotted in figure 7. In the bed
shear stress analysis, the presence of the horseshoe vortex was detected from the
direction of the bed shear stress vector.
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F 5. Picture of the flow in front of the base of circular pile. A: lowermost portion of the pile
(made of transparent material) through which light spreads out. There is no horseshoe vortex for (a),
but there is one for (b). ωt¯ 100° in (a) and 90° in (b).
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F 6. Vector diagram illustrating the horseshoe vortex in the y¯ 0 plane.
KC¯ 10.3 and ωt¯ 90°.

Figure 7 indicates that (i) no horseshoe vortex exists for KC below 6, and (ii) the
horseshoe vortex first emerges when KC¯ 6 and is maintained over a larger and larger
span of ωt, as KC is increased. (The asymmetry observed in figure 7 between the two
half-periods is due to the asymmetry in the waves (figure 2).)

For the Re
D

experienced in the present tests (Re
D

¯O(10$)), the flow over the pile
surface separates at about KC¯ 1 (see Sarpkaya 1986), whereas the present results
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F 7. Occurrence of horseshoe vortices in phase space, circular pile. Circles, from the flow-
visualization experiments ; crosses, from the bed shear stress measurements.

show that the flow in front of the pile separates at KC¯ 6, a much higher KC than that
needed for the flow separation at the pile surface. The question is then: what
mechanism suppresses the boundary-layer separation in front of the pile for KC below
6? This is related to the adverse pressure gradient. Using potential-flow theory, the
pressure gradient in front of the pile (along the x-axis) can be written as

¥p
¥x

¯
1

2

ρU #¢

D 91®
1

4(x}D)#: 9
1

(x}D)$: . (13)

Likewise, the pressure gradient over the surface of the pile, again using potential-flow
theory, can be written as

¥p
¥x«

¯®8
ρU #¢

D
sin (2x«}D) cos (2x«}D), (14)

in which x« is the distance along the pile surface measured from the stagnation point
(i.e. from the point x¯®0.5D, y¯ 0). From (13) and (14), it is found that the
maximum value of the adverse pressure gradient in front of the pile is a factor 5 smaller
than that over the surface of the pile. This explains why the separation is ‘delayed’ in
front of the pile until after KC reaches the value of 6, a considerably larger value than
that necessary for the flow separation over the pile surface (namely, KC¯ 1).

Figure 8 presents a sequence of pictures illustrating the development of the
horseshoe vortex during the course of approximately one half-period of the waves for
KC¯ 10.3. The horseshoe vortex first emerges only after ωt reaches about 50° (frame
2). It grows in size as the flow develops (frames 3 and 4), and eventually gets disrupted
by the leewake, which is washed around the pile just prior to the flow reversal (frame
5), and presumably it then disappears.

Figure 8 (frames 3 and 4) shows that there are some secondary horseshoe vortex
formations (a in frame 3 and b and c in frame 4). This indicates that the main vortex
causes the boundary layer to separate into a series of secondary vortices, known from
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F 8. Time evolution of the horseshoe vortex in waves ; circular pile. KC¯ 10.3.
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F 9. Presence of horseshoe vortex in phase space: influence of cross-sectional shape. Crest
half-period (ωt¯ 0°–180°). The circular-pile curve is from figure 7.

the steady-current horseshoe-vortex research (e.g. Baker 1979 and Dargahi 1989). It
was observed that these smaller-scale vortices were rather turbulent and impermanent.

5.2.1. Influence of cross-section

Figure 9 displays the results of the square-section-pile flow-visualization experiments
together with the circular-pile ones (figure 7a), illustrating the influence of cross-
section on the formation of the horseshoe vortex in phase space. Comparison is made
only for the crest half-period, ωt¯ 0°–180°. The horseshoe vortex appears at a slightly
lower KC in the case of the square-section pile with 90° orientation, namely at KC¯ 4,
than in the case of the circular pile. This obviously leads to larger lifespans (§5.3). The
reason why the flow separates (and therefore the horseshoe vortex comes into
existence) at a smaller KC is that the adverse pressure gradient generated in front of
the square-section pile is larger than that generated in front of the circular pile.

As regards the square pile with 45° orientation, the critical KC beyond which the
horseshoe vortex exists apparently lies between 4 and 6.

5.2.2. Influence of superimposed current

Figure 10 illustrates the influence of a superimposed current on the horseshoe vortex.
Only the data corresponding to the half-period where the waves are propagating in the
same direction as the current (ωt¯ 0°–180°) are shown. It is clear that the horseshoe
vortex exists for smaller and smaller KC with increasing U

c
}U

m
. This result is directly

related to the increase in the adverse pressure gradient in front of the pile caused by
the superimposed current. The larger the value of the current-to-wave velocity ratio,
U

c
}U

m
, the larger the adverse pressure gradient in front of the pile, therefore the more

favourable the flow environment for the horseshoe vortex to be formed.
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F 10. Presence of horseshoe vortex in phase space: influence of superimposed current. Circular
pile. The half-period where the current is in the same direction as that of wave propagation. Waves-
alone curve is from figure 7.
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F 11. Lifespan of horseshoe vortex; circular pile. Circles, for the horseshoe vortex formed in
front of the pile ; squares, for that formed behind the pile.

5.3. Lifespan of a horseshoe �ortex

Figure 11 presents the circular-cylinder data related to the lifespan of the horseshoe
vortex, T

h
, as function of KC, obtained from figure 7. T

h
here is defined by

ωT
h
¯ (ωt)

#
®(ωt)

"
, (15)

in which (ωt)
"
is the phase at which the separation occurs and therefore the horseshoe

vortex appears, and (ωt)
#

is the phase at which the horseshoe vortex completely
disappears. The circular symbols correspond to the horseshoe vortex being formed in
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F 12. Lifespan of horseshoe vortex: influence of cross-sectional shape.
Circular-pile curve is from figure 11.

180

90

0 10

KC = 6

ωTh
(deg.)

KC

20 30 ¢
(Steady
current)

Waves alone

F 13. Lifespan of horseshoe vortex: influence of superimposed current. Circular pile. The half-
period where the current is in the same direction as that of wave propagation. Symbols are the same
as in figure 10. Waves-alone curve is from figure 11.

front of the pile while the square ones correspond to that behind the pile. The difference
between the two is due to asymmetry in the waves, as mentioned above.

Figure 12 shows the influence of cross-sectional shape on the lifespan of a horseshoe
vortex. (Comparison is made only for the crest half-period, ωt¯ 0°–180°). As seen in
the preceding subsection, the horseshoe vortex appears at a smaller KC, namely at
KC¯ 4, in the case of the square pile with 90° orientation than in the case of the
circular pile (figure 9). This implies that the lifespan of a horseshoe vortex must be
larger in the former case than in the latter case, as revealed by figure 12. The figure
further shows that the result for the square-section pile with 45° orientation lies
between the circular pile and the 90°-orientation square pile.

The influence of current on the lifespan of a horseshoe vortex is depicted in figure
13. (Only the data corresponding to the half-period where the waves are propagating
in the same direction as the current, ωt¯ 0°–180°, are shown). The lifespan of the
horseshoe vortex in phase space is increased quite substantially with increasing U

c
}U

m
.
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F 14. Separation distance; circular pile. Circles, for the horseshoe vortex formed in front of the
pile (ωt¯ 90°) ; squares, for that formed behind the pile (ωt¯ 270°) ; open symbols, the incoming
boundary layer is laminar; filled symbols, the incoming boundary layer is turbulent ; dotted line, from
Baker’s (1985) empirical expression (equation (16)).

This is due to the increase in the adverse pressure gradient in front of the pile with
increasing current.

5.4. Separation position

Figure 14 depicts the separation distance, x
s
, associated with the formation of the

horseshoe vortex (see also figure 1). x
s

is measured from the centre of the pile. The
plotted data correspond to the phase values ωt¯ 90° and 270° (the circles and squares,
respectively). The x

s
values were obtained both from the flow visualization films and

from the bed shear stress measurements. The figure also includes the steady current
results of the present study as well as the results from the studies of Belik (1973) and
Baker (1979) plus Baker’s (1985) empirical expression (see below). From figure 14, x

s

first experiences a steep increase with KC, and then it tends to approach its asymptotic
value (the steady-current value), KCU¢. From figure 14, the x

s
values obtained from

the bed shear stress measurements appear to be slightly larger than those obtained
from the flow visualization study. This is because the latter does not enable the
separation point to be detected precisely; in fact, the upstream edge of the visualized
hydrogen-bubble band lies a little downstream of the actual separation line.

Figure 14 includes Baker’s (1985) empirical expression for laminar horseshoe
systems, with zero pressure gradient in steady currents :

x
s
}D¯ 0.50.3(Re

D
)!.%)(δ*}D)!.*' tanh (3h}D), (16)

in which δ* is the displacement thickness of the undisturbed boundary layer and h is
the pile height. Since, at the phase values ωt¯ 90° and 270°, the undisturbed pressure
gradient is zero, we may compare the present results plotted in figure 14 with the Baker
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F 15. Separation distance at ωt¯ 90° : influence of cross-sectional shape. Circular-pile curve is
from figure 14. Open symbols : the incoming boundary layer is laminar; filled symbols : the incoming
boundary layer is turbulent.

formula (16). For this, δ* is predicted using the relationship δ*¯ (2}3π) δ, obtained
from the laminar-flow oscillatory boundary-layer solution (Batchelor 1967, p. 192),
corresponding to the present tests. Also, h}DU¢ in the present tests. From the figure,
there appears to be a reasonable agreement between the present results and that
predicted by the Baker formula.

Finally, the scatter in the data for KC¯¢ (the steady-current case) in figure 14 is
due to the Reynolds number effect ; an inspection of the data indicates that x

s
}D

increases with increasing Re
D
, in agreement with the results of Baker (1979).

Figure 15 shows the influence of cross-sectional shape on the separation position
associated with the horseshoe vortex. (Comparison is made only for the crest half-
period, ωt¯ 0°–180°.) The figure shows that, for a given KC, x

s
}D is largest for the

square pile with 90° orientation and smallest for the square pile with 45° orientation,
the circular pile result being in between. This is linked to the streamwise extent of the
adverse pressure gradient induced by the pile, which is largest for the square pile with
90° orientation, moderate for the circular pile and smallest for the square pile with 45°
orientation.

Figure 16 shows the influence of superimposed current on the position of the
separation point. (Only the data corresponding to the half-period where the waves are
propagating in the same direction as the current, ωt¯ 0°–180°, are depicted.) As seen,
x
s
}D increases quite markedly with increasing values of U

c
}U

m
. This is again directly
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F 16. Separation distance at ωt¯ 90° : influence of superimposed current. Circular pile. The
half-period where the current is in the same direction as that of wave propagation. Symbols are the
same as in figure 10. Waves-alone curve and the asymptote (dashed line) as KC!¢ are from figure
14.

related to the increase in the adverse pressure gradient in front of the pile caused by
the superimposed current, as pointed out in §5.2. The larger the value of the current-
to-wave velocity ratio, U

c
}U

m
, the larger the adverse pressure gradient in front of the

pile, therefore the more pronounced the horseshoe vortex.

5.5. Bed shear stress beneath the horseshoe �ortex

Figure 17 shows the variation of the bed shear stress along the x-axis (figure 1) at the
phase values ωt¯ 90° and 270°. When ωt¯ 90°, the wave-induced flow is from left to
right, (called the crest half-period) and the horseshoe vortex is formed in front of the
pile, while when ωt¯ 270°, the flow is from right to left (called the trough half-period)
and the horseshoe vortex is formed at the back of the pile. The steady current results
together with Baker’s (1979) data are also included in the figure. The small asymmetry
in the bed shear stress distributions with respect to x is due to asymmetry in the waves
(figure 2b, c, d ). Figure 17(a) (KC¯ 2.8) shows that no horseshoe vortex exists for
ωt¯ 90° and 270°, as no negative bed shear stress is measured for this KC. The
measurements showed that this was the case for all ωt values, revealing that no
horseshoe vortex is formed for KC¯ 2.8, in agreement with the visual observations
(figures 5a, 7, 11 and 14).

Figure 17(b–e) illustrates quite clearly the increase in the streamwise extent of the
horseshoe vortex (the bed area where τa

!
! 0) with KC (cf. figure 14).

The bed shear stress under the horseshoe vortex at a distance 0.1D from the
upstream edge of the base of the pile is plotted in figure 18 together with the results of
the present oscillatory water tunnel experiments. Figure 18 shows that the bed shear
stress under the horseshoe vortex increases with increasing KC. This is a direct result
of the increased presence of the horseshoe vortex with increasing KC (figures 11, 14 and
17).

The scatter in the data for KC¯¢ (the steady-current case) in figure 18 is due to
the Reynolds number effect. As mentioned previously in conjunction with figure 14, the
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F 17. Bed shear stress along the x-direction at the horseshoe vortex side of the pile. Circular pile.
S¯Separation point. Symbols : circles, present results (tests 1, 4, 8, 14 and 48) ; squares, present
results (test 49) ; crosses, Baker’s (1979) air experiments, where D¯ 7.6 cm, V¯ 51 cm s−", D}δ*¯
14.8 and Re

D
¯ 2610, δ* being the undisturbed displacement thickness of the boundary layer.

larger the Reynolds number, Re
D
, the larger the separation distance x

s
, therefore the

larger the bed shear stress under the horseshoe vortex. The steady-current data in figure
18 appear to reveal this.

Figure 19 depicts the root-mean-square (r.m.s.) value of the fluctuating component
of the bed shear stress under the horseshoe vortex (at a distance 0.1D from the
upstream edge of the cylinder), plotted against KC. First, a non-zero r.m.s. value means
that the horseshoe vortex is not in the laminar regime. Figure 19 indicates that, while
the horseshoe vortex is in the turbulent regime for KC¯ 20 and ¢ (the steady-current
case), it is in the laminar regime for KC¯ 6 (for both half-periods of the waves) and
for KC¯ 10 (for only the trough half-period). From the figure it is inferred that the
transition to turbulence in the horseshoe vortex begins to occur somewhere between
KC¯ 10 and 20. (Recall that the incoming wave boundary layer for these KC, and
indeed for all the other KC in the present flume experiments, was in the laminar regime
(tables 1–3.)

Now, Baker’s (1991) work on the oscillation of horseshoe-vortex systems in steady
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F 21. Amplification of the bed shear stress along the x-axis at the lee-side of a pile. Circular pile.
Circles, in front of the pile ; squares, behind the pile ; triangles, the oscillatory-tunnel experiments.

currents shows that the so-called primary oscillations (the oscillations of the separated
flow system) first emerge when (Baker 1991, figure 3).

Re
D
(δ*}D)"/#¯ 800, (17)

while the so-called secondary oscillations (those of the vortex core) first emerge when
(Baker 1991, figure 5)

Reδ* ¯ 150. (18)

It should be emphasized that these limits define the boundaries of the flow regimes
where the separated flow system and the horseshoe vortex become of oscillatory
character, but not truly turbulent.

The preceding non-dimensional quantities corresponding to the transition observed
in the present tests (i.e. that occurring at KC¯ 10–20), are found to be

Re
D
(δ*}D)"/#¯ 500–900 (19)

and Reδ* ¯ 60–110, (20)

which do not differ radically from the Baker values above. (In the calculations, δ* is
predicted, again, using the relation δ*¯ (2}3π) δ, obtained from the laminar-flow
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oscillatory boundary-layer solution (Batchelor 1967, p. 192)). However, the transition
must depend not only on Re

D
(or Reδ*), δ*}D and KC, but also on the regime

(laminar}turbulent) of the incoming boundary layer.
Secondly, figure 19 shows that the r.m.s. value of the fluctuations in the bed shear

stress beneath the horseshoe vortex can reach values as large as the mean bed shear
stress itself in the case when KC¯ 20, and it can even reach much larger values (in fact,
a factor of 3–4 larger than the mean bed shear stress) in the case of a steady current.
This may have significant effects on sediment transport in the process of scour around
a pile placed in an erodible bed.

6. Lee-wake vortex-flow regimes

The shear layers emanating from the side edges of the pile roll up to form vortices
in the lee wake of the pile (figure 1). The non-dimensional quantities describing this
vortex flow depend mainly on

KC, Re
D
, k

s
}D, pile geometry, (21)

in which k
s
is the roughness of the pile surface.

The present analysis concerns the variation with KC. The video recording of the flow
around the base of the circular pile visualized by the hydrogen bubbles (figure 20) has
been analysed for the crest half-period of the wave motion (ωt¯ 0°–180°), to study the
lee-wake flow as a function of KC. From this analysis, the following vortex-flow
regimes emerged.

(a) KC! 4. Separation behind the pile occurs in the form of a pair of symmetric,
attached vortices (figure 20a). These vortices are washed around the pile when the flow
reverses.

(b) 4!KC! 6. The symmetry between the two attached vortices breaks down
(figure 20b). (The vortices are still attached, and no shedding occurs.)

(c) 6!KC! 17. Vortex shedding first occurs when KC reaches 6. In this regime,
one vortex is shed in each half-period of the waves (figure 20c). The attached vortices
(figure 20c) are washed around the pile when the flow reverses. This regime
corresponds to the single-pair regime of Williamson’s (1985) two-dimensional
sinusoidal plane oscillatory flow regimes.

(d ) 17!KC! 23. In this regime, two vortices are shed in each half-period of the
waves (figure 20d ). The attached vortices are washed around the pile when the flow
reverses, in the same way as in the previous regimes. This regime corresponds to the
double-pair regime of Williamson’s (1985) two-dimensional sinusoidal plane oscillatory
flow regimes.

The present findings differ from the two-dimensional flow regimes of Williamson in
only one aspect. Namely, the so-called transverse vortex street, a characteristic feature
of the single-pair regime for 6!KC! 13 where a vortex street forms perpendicular to
the direction of the motion, was not observed in the present case. This is linked to the
disruption of this special vortex-flow regime in the case of real waves.

Apart from this disagreement, the present results are in accord with the results
obtained for the two-dimensional free-cylinder case. This is attributed to the extremely
small wave-boundary layer thickness (δ}D¯O(0.05), see table 1), and therefore the

F 22. Amplification of the bed shear stress around circular pile. Steady current result is
from Hjorth (1975) (D¯ 7.5 cm, V¯ 30 cm s−", h, the water depth¯ 20 cm).
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incoming boundary layer is turbulent.

three-dimensionality of the flow is not significant as regards the development of the
observed vortex-flow regimes.

Figure 21 depicts the bed shear stress distribution along the x-axis (figure 1) in the
lee-wake area for various values of KC, including the steady-current case. First, the
extent of the area influenced by the leewake increases with increasing KC, as expected.
This agrees well with the previously described visual observations. Furthermore, it is
seen that the bed shear stress in the wake increases with increasing KC. The
amplification in the bed shear stress with respect to its undisturbed value can be as high
as 2 for KC¯ 20 and even higher, Max rτa

!
r}τ

!m
¯O(10), for the case of a steady

current. Finally, the bed shear stress experiences a maximum around rxr}DE 1. This
is due to the contraction of the mean flow in plan view in the area between two
oppositely rotating vortices emanating from the two side edges of the pile.
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7. Amplification of bed shear stress

The distribution of the bed shear stress along the streamwise axis has been discussed
earlier in conjunction with the horseshoe vortex (figure 17) in §5 and with the lee-wake
flow (figure 21) in §6.

Figure 22 gives the full picture of the bed shear stress in the form of contour plots
for various KC, including the steady-current case. The quantity α in the figure is the
amplification in the bed shear stress defined by

α¯Max rτa
!
r}τa

!m
(22)

in the case of waves and
α¯Max rτa

!
r}τa

!
¢ (23)

in the case of a steady current.
First, the asymmetry observed for the wave cases (figure 22a–d ) is due to the

asymmetry between the wave crest and the wave trough.
Secondly, the figure shows that there is a concentration of bed shear stress near the

side edge of the pile in the case of waves. The point where the amplification is maximum
is almost at the side edge of the pile when KC¯ 2.8 while it is displaced a little
upstream of the pile for other KC values. This is partly because of the wave asymmetry
(figure 2) and partly because of the presence of the horseshoe vortex. In the case of a
steady current, however, this point moves upstream halfway between the front and the
side edges of the pile (point A in figure 22e). This is due to the strong presence of the
horseshoe vortex in the case of a steady current.

Thirdly, while the maximum amplification of the bed shear stress is α¯ 3–4 in the
case of waves, it reaches values as high as 11 in the case of a steady current. In the
former case, the maximum amplification in the bed shear stress is mainly due to the
contraction of streamlines near the side edges of the pile. Figure 23, where α is plotted
along the y-axis (figure 1) together with the potential-flow solution

α¯ [10.25}(y}D)#]#, (24)

supports this argument, since the wave and oscillatory-flow data agree quite well with
the potential solution. On the other hand, in the steady-current case, the maximum
amplification (being a factor 3 larger than the corresponding figure in waves) is due
partly to the contraction of streamlines near the side edges of the pile and partly to the
strong horseshoe vortex formed in front of the pile. Finally, it may be noted that the
bed shear stress data presented in figure 22 may prove useful with regard to its
application in the design of scour protection around piles.

8. Conclusions

(i) The horseshoe vortex formed at the bed in front of a pile exposed to waves is
primarily governed by the Keulegan–Carpenter number, KC.

(ii) No horseshoe vortex exists when KC! 6 for a circular pile. The horseshoe
vortex increases in both size and lifespan as KC is increased.

(iii) The influence of cross-sectional shape of the pile on the presence and formation
of the horseshoe vortex is substantial. For a square pile with 90° orientation, the critical
value of KC beyond which the horseshoe vortex comes into existence is 4, the result
corresponding to the square pile with 45° orientation lies between 4 and 6.

The streamwise extent of the horseshoe vortex is largest for the square pile with 90°
orientation and smallest with the square pile with 45° orientation, that corresponding
to the circular pile being between the two.
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Tests Pile
D

(mm)

V
!

(measured)
(cm s−")

U
f

(measured)
(cm s−")

δ
(mm)

Reδ ¯
δV

!

ν

Re
D
¯

DV
!

ν

48 Circular 40 9.5 0.47 4.00 3.8¬10% 3.8¬10$

49 Circular 90 9.5 0.47 4.00 3.8¬10% 8.6¬10$

50, 51 Square pile with 90° orientation (D¯ 40 mm) and 45° orientation (D¯ 57 mm),
respectively. Test conditions are the same as in Test 48.

T 2. Flume experiments. Steady current. Regime of incoming boundary layer is turbulent

(iv) The influence of a superimposed current on the horseshoe vortex is also
significant. The effect is to increase the size and lifespan of the horseshoe vortex. This
influence becomes more and more pronounced with increasing U

c
}U

m
, the current-to-

wave-velocity ratio.
(v) The bed shear stress beneath the horseshoe vortex at the upstream edge of the

pile is strongly influenced by KC. While it is of the same order of magnitude as the
undisturbed-flow bed shear stress for moderate KC (KC¯O(10)), it increases to 6–7
times the undisturbed bed shear stress as KCU¢ (i.e. in the steady-current case).

(vi) The near-bed lee-wake flow has a wide variety of vortex-flow regimes. These
flow regimes, namely the symmetric vortex-pair regime (KC! 4), the asymmetric
vortex-pair regime (4!KC! 6), the single-pair regime (6!KC! 17), the double-pair
regime (17!KC! 23), agree quite well with the corresponding two-dimensional
oscillatory free-cylinder flow regimes as observed e.g. in the work of Williamson (1985).
However, in the present case, no transverse vortex street was observed in the single-pair
vortex regime.

(vii) Similar to the bed shear stress under the horseshoe vortex, the bed shear stress
in the lee wake of the pile is also influenced by KC. While the bed shear stress in the
lee-wake area is of the same order of magnitude as the undisturbed bed shear stress for
O(10)!KC! 100, it becomes a factor 10 larger when KCU¢ (i.e. in the case of a
steady current).

(viii) The amplification of the bed shear stress with respect to its undisturbed value
is maximum (O(4)) at (or near) the side edges of the pile in the case of waves, in
agreement with potential-flow theory. In the case of a steady current, however, the
location of the maximum bed shear stress moves upstream along the periphery of the
pile (at about 45° from the main flow direction) and the magnitude of the maximum
amplification becomes O(10).

This work was funded jointly by the Danish Technical Research Council (STVF)
under the programme ‘Marin Technique’ and by the Commission of the European
Communities, Directorate General for Science, Research and development, under
MAST contract No. MAS2-CT92-0047, ‘Monolithic (Vertical) Coastal Structures ’.

Appendix

A summary of the test conditions is given in tables 1–4.
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Tests

U
m

(measured)
(cm s−")

U
fm

(measured)
(cm s−")

a
(cm)

Re¯
aU

m

ν
δ

(mm)

KC¯
U

m
T

D

Reδ ¯
δU

m

ν

Re
D
¯

DU
m

ν

Regime of
incoming
boundary
layer flow

63 1.9 — 3.2 6.1¬10# 4.3 4.1 0.8¬10# 9.5¬10# Laminar
64 4.6 0.61 8.0 3.7¬10$ 4.4 10 2.0¬10# 2.3¬10$ Laminar
65 23.1 — 39.8 9.2¬10% 4.4 50 1.0¬10$ 1.2¬10% Laminar
66 46.3 2.5 79.6 3.7¬10& 11.4 100 5.3¬10$ 2.3¬10% Transitional
67 55.6 — 95.5 5.3¬10& 15.0 120 8.3¬10$ 2.8¬10% Transitional

T 4. Water-tunnel experiments. Pure oscillatory flow. Circular pile, D¯ 50 mm.
Flow period T¯ 10.8 s
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